No-one has asked for any hints for Problem Sheet 6, so here instead are some remarks about implication. Let and be mathematical statements. By definition means: ‘If is true, then is true’.

Suppose that is true. It should be clear from the definition that is true if is true, and false if is false. However there is one point that may seem unusual. Let be the proposition ‘There are infinitely many primes’ and let be the proposition ‘‘. Then since and are both true, is true. But surely no-one would say that it is because there are infinitely many primes that .

This example shows that there are ways to use that, while logically correct, do not help to show the chain of logic in an argument. In practice when mathematicians write they mean ‘if is true then there is a fairly simple reason why is true’. If you use in this way your arguments will be clearer and easier to read.

(Of course what is ‘fairly simple’ to one person might seem completely non-obvious to another, so how is used in practice also depends on the writer and his or her intended readership. When writing answers, I suggest you imagine the reader is one of your friends who is also taking the course, or yourself in six months time.)

Similarly, you should write to mean ‘there is a fairly simple reason why is true if is true and is true if is true’. This agrees with the uses of in Exercise 5.2 and Example 5.3.

Now suppose that is false. In the lecture, we agreed that if is also false than should be true, since is logically equivalent to the contrapositive , and we know that a true statement implies a true statement. The trickier case is when is false and is true. Then is true. I was running out of time in the Monday lecture, so I said you could regard this as a convention. This was a bit lazy: really it follows from the definition of .

Remember means ‘if is true, then is true’. If is false, there is no restriction on at all! Therefore if is false then is always true. So a false statement implies anything. This has a parallel in everyday language, where we extrapolate an obviously false statement from a statement we believe is most likely false: ‘if everyone taking MT181 completely understands implication then pigs can fly’.

Finally: while searching the web for variants on the expression ‘I’m the Queen of Sheba’, or ‘pigs can fly’ I found a Blog post by Timothy Gowers that discusses all the issues above much more carefully. You might find the comments make interesting reading.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Tuesday, November 13th, 2012 at 5:54 pm and is filed under Number Systems. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.